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ROTATIONAL EXCITATION OF DIATOMIC MOLECULES IN COLLISIONS 

WITH ATOMS 

G. V. Dubrovskii, V. A. Pavlov, 
and R. ~o Mukhametzyanov 

UDC 533.10 

The rate constants for rotational excitation, the coefficient of RT diffusion for 
the Ar--N2 system, and the rotational relaxation time in N2 are calculated using 
the quasiclassical approximation. 

The growing interest in analytical methods for calculating the rotational excitation of 
molecules has been aroused by research on the possibilities of creating lasers based on rota- 
tional transitions, experiments with expanding jets, studies of the contribution of rotational 
degrees of freedom to the transport properties of a gas and the behavior of a molecular gas 
in a magnetic field, research in molecular acoustics, spectroscopy, etc. In [I, 2], a method 
based on a rigorous quasiclassical approximation to the T scattering operator in terms of ac- 
tion-angle variables was proposed for calculating the vibrational--rotational interaction of 
particles. In our opinion, this method is more accurate and efficient than previously proposed 
methods (see, for example, the review in [3]), if we are talking about three-dimensional col- 
lisions of complicated objects (polyatomic molecules, clusters) with one another or with a 
surface. The good accuracy of a simplified variant of this theory (eikonal approximation) 
achieved in calculations of the differential cross sections of electronic [i] as well as 
vibrational--rotational [2] excitations with small changes in quantum numbers was demonstrated. 

In this work, we continue the investigation of the theory and we perform specific cal- 
culations of the rotational excitation of diatomic molecules by atoms using the proposed 
method for typical gasdynamic conditions. We show that for the model of a plane rotator the 
increment to the classical action of the atom + rotator system, which determines the transi- 
tion amplitude, contains only terms that are quadratic with respect to the potential. We 
include approximately the spatial configurations of the rotator. The cross sections obtained 
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~pp 
Fig. I. Collision of an atom with a diatomic 
molecule: @j, @M) angular variables of the tar- 
get in a fixed system of coordinates XYZ; y) 
angle between the radius vector of the relative 
position of the colliding particles R and the 
axis of the molecule BB. 

are used to calculate the rate constants of RT processes, the diffusion coefficients in the 
Fokker-Planck relaxation equations, and the rotational relaxation time TR in N2. The latter 
permits calculating the coefficient of bulk viscosity, as well as other transport coeffic- 
ients in rotationally excited nitrogen, using the Mason--Monchik approximation. 

i. General Expressions for the Rotational Excitation Profile for a Rigid Rotator. We 
start from the foil owing expression for the amplitude of rotational excitation jm § j 'm' in 
the eikonal approximation [2]: 

j " i~ A.Ro) F~,:/'~' (Ro, f i ,  ,~, i k  ~" �9 (P-->" P" ) =  2~ dRoeXp 
(1) 

-p~'m' dq)o j  (' ~ ; . 

0 n 

In these equations j, m are the orbital and magnetic quantum numbers, respectively; Aj = j -- 
j' Am = m m' , -- ; ~(,; =:~j (t = 0), @oM =~M (t = 0) are the angular variables of the rotator 
at the moment of greatest approach of the particle; Ro = R (t = 0) (see Pig. i); A = p --p' 
is the momentum transferred; AS = S -- So is the increment to the classical action; 5j j, is 
Kronecker's symbol; and k is the modulus of the wave vector. 

We are examining a gas at room and higher temperatures (Fig. i) when the solution of 
the Hamilton--Jacobi equation is sought in the form [4] 

S---- ~ Sv (q~, Jz; R, p~), 
p=O 

J = h ( n - 8 ) ,  J = ( J ,  M), n = ( i ,  m), 

where Jl, Pl are the generalized mome~ta on a section of the eikonal trajectory l; R(t), 
~(t) are its conjugate coordinates; ~= (~j, ~<,. We write the system of equations for Sp: 

a S p  O.Ydo (Jd O S v  i v,. ~ - - ~ ' P  (t~, Jfi R, p~), 
OJz Oqr OR 

So.-p~-P:, i -J t 'q  ~, (3)  

J,r ~r z ) =  V (~, z), 

{s,, {s,, ;~:o}}, . . .  . ~  try, z ) :  t<..,,, v} + '-S- 

I n  Eqs. (3), ~ = (R, ~); z = (p, J); ~-0 is the Hamiltonian of the rotating molecule; V is 
the interaction potential of the colliding particles; the symbol {X, Y} indicates the clas- 
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sical Poisson bracket with respect to the variables $, z and, in addition, after these brac- 
kets are calculated, we must set z = z~ = (0~, J~). Below, we assume that the trajectory of 
relative motion lies in a plane parallel to the XY plane and the point of closest approach 
lies in the XZ plane. The equation for Sx is integrated simply as 

AS~ ~ - - -  j J ' tV i lR l ' r t ,  ~.'it)i. ( 4 )  

and, in addition, for R(t), q(: ) we use the eikon~'• approxi~:mtion 

~ i .  (J) 
R(~)..Ro-!-v~.~t, ~(t~ - - ~ o -  %.;r, x,- 

8J (5) 

In the next higher orders, we shall include only the flat c)nfigurations of the rota- 
tor, when in the course of a collision the plane of rotation of the rotator coincides with 
the plane of relative motion of the colliding particles, i.e., q~ = (0,,), J = (0, J). 

Using the relations ~Sx/3J = 3V/3J = 0, ~,(J) = (Be/~)J~. we obtain the following 
expression for .$~: 

I [ a S ,  "i ~ 8~.7t,, B~ ~ OS~ ,~ 

It is clear that all subsequent .~' (p > 2) vanish by virtue oi the quadratic dependence of 
ard0 on J. For this reason, we obtain the following expression for the increment to the 
classical action of a plane rigid rotator on the incoming branch of the trajectory: 

B~ lim d'r . dx' (R~(x') ,  % ( t ' ) )  
AS~ (l) - ;p- r,,-~ . 1 8g:,; 

--7,, ~~T0 

R i ~ t ' )  Ro-~  v l t ' ,  ( t~( t ' )  - % { v J '  (~i(t)------(li. 

Making the substitution qo = q~' + vi~' and differentiating with respect to the upper limit 
~o i = q o i ( r )  i n  t h e  i n n e r  i n t e g r a l ,  we o b t a i n  

t 

,~$2 (~) �9 V~ ~/2 7,,liln,~ ,~I dTVg- [R i  (T), q)i (T}, 

"TL 

If we introduce instead of vi and vf the average rotational frequency of the rotator 
Vs = (vi + vf)/2, then the increment to the action in written in the form 

A.% AS1 i- Ai~.,, (6)  

~.oo 
AS2:---::--:-,- i 

v~ h.~ j 
d~V~ IR (~), ~[~('Eit, (7) 

In expressions (4) and (7) we can substitute the more accurate smooth approximations R(~), 
~(T) for the eikonal trajectories (5) with a "break". 

Next, we shall examinee the system A + Ba and we ~hall select the interaction potential 

in the form 

t,~R, ?)~-~W,,(R~-i-~,~R. ~,), V~(~ ;I - ~ ' ~ , c o ~ 2 ~ : ,  (8)  

w h e r e  T i s  t h e  a n g l e  b e t w e e n  t h e  r a d i u s  ver  R and t h e  a x i s  o f  t h e  r o t a t o r  ( F i g .  1 ) .  I n -  
stead of the complicated formuJa (1), we sha~ ::se below its simptified variant [2]: 

[~ "m ' , / 'm ' 
i,,~ {p- .~p'):-: fo(E,  eh I i . i , . [Ro(@),  (D .... 0l, (9)  

where fo(g, O) is the elastic scattering amplitude for the potential Wo(R) as a function of 
the scattering angle O and the energy E of relative motion of the colliding particles in the 
initial channel; F,j'm'jm is the inelastic scattering profile, which is defined by Eq. (2), 
if for AS we use expressions (6), (4), and (7), in which we must substitute Vx for V. In 
this case, the dependence of the point of closest approach Ro on the scattering angle @ is 
determined from the solution of the trajectory equation for the potential Wo(R). 
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In analyzing the effect of different factors on the analytic expression for the cross 
s e c t i o n ,  b e l o w  we s h a l l  r e s t r i c t  o u r  a t t e n t i o n  t o  f i r s t - o r d e r  p e r t u r b a t i o n  t h e o r y  i n  c a l -  

* T  ! 

culating AS. As shown i n  [2], for F~3 m jm i n  the case of potentials of the type (8), the 
f o l l o w i n g  r e p r e s e n t a t i o n  i s  v a l i d :  

2 a  

ri ',,," d~~ exp 'iAm~o~ C n '  J ~  
~,i,,,(Ro)== 2a ' ~ -'- 2 . ,  ~ T .  ' 

0 

where Jq(x) is a Bessel function, Co, ~o, F are some functions of q'oM, which are easily cal- 
culated, if in the required variables we substitute for cos T with the help of the relations 

c o ~ y =  [ X ' / )  - Y(/) J R (t) sm q%.u R (t) cos q%.~I sin (rpo J --{- v j ) -  - 

I X ( 0  Y, t }  Z( t )  l f ~  ] c o s ( % , - - , : , h ,  ,:,. cos %,~: 'i- - -  X sin q~o.;~ i 
R (l) R ~t) R (t) ' 

) . = M / J ,  R(t) = ( X ( t ) ,  Y(t), Z(t)), 

and carry out the integrals over time. These functions are represented in the form 

F =-- (A 2 + B ~) !/.2, ~o ..... arctg B/A, Co ==' q cos 2%M-!-- c, cos if'0.;,, -i- c~, 

A .... a~ sin 2%M -I- a2 cos %.u, B -: b~ cos 2%,~ -j-- b~ cos %,u - i-  ])8 ' 

where the coefficients ai, bi, ci are expressed in terms of an integral of the type (S is 
the algebraic sum of the quantities indicated) 

Q . . . . .  +~oS dl W,,.IR(t)I2R ~'(t) ..Tlsinv;, cos-v~t, ~, X(t), Yd),. Z(~)~. (10)  

In particular, for the model of a plane rotator (% = i), we obtain: 

C0 = const, ~o = ~ -  2%,u, 

3-oo 

I i' F =  I dt W~ IR (t)l [Y*- (t) cos 2v~t --X 2 (l) cos 2v g --2X 8) Y (t) sin 2v~il], 
2R z (t) 

i ' m "  ; l 
Fl.i,:  (no) .... e• I T  Co 8a,+~,'.o g ~  ' F 

( l l )  

2. Expressions for the Rotational Excitation Cross Sections. We shall calculate the 
differential cross section of rotational excitation using the equation 

o H , (E, (-~) I k' . ~ ' ~  i,~j',,," . , - i . ,  (E, O)l~ (12) 2j-4- I k ...... "~., 

i ' m '  i ' m '  We s u b s t i t u t e  h e r e  t h e  p r o d u c t  ( f  m ) * * f  m , u s i n g  Eq. ( 9 ) ,  and r e p l a c e  t h e  sum o v e r  m, m' 
by  surmnat ion o v e r  m, Am. We n o t e  f u r t h e r - t h a t  t h e  i n c r e m e n t  t o  t h e  a c t i o n  AS i s  v i r t u a l l y  
independent of Am, which gives 

~lo sin (Mo-f.l-~--I , 2 t A % w  

exp (iAmAq:'o~;~) -.-=: ~ U (A~oM), 
sin (A%,:.~/2) APll -=- ---),l ,, 

where Mo = j + j' + i, A~0M-=q%?~--~0M. 

Under the assumption that Mo is vet,;: large (for small Mo we can use different approxima- 
tions, which are related to the determining contribution of large impact parameters), we shall 
use the approximate equality 

2."1 2 ~  2,~, 

dq:'~ [" ' .... % U/At ...)m~: 
(. 

2 ~  | 2 .  
0 0 
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Making the substitutions M = JX, % = cos B, m = (j + i/2)% and replacing the sum over m by 
the corresponding integral, we have 

! 

i t 1 ,, 1 ' 1 d[~ sin I'; 
" '  ' 2 ~, 2 . 21v-1 . '~! I ~, 0 

m . . . .  /-- ..7- - - j - -  i ,  r ---  

Thus, 
cross section, which takes into account approximately the spatial configurations of the 
rotator: 

~ii" (E, O) = ~o (E, O) ~H" IE,  Ro (O), r = 01, 

for large j and j' we can use the following representation for the differential 

2Jt 

~'~ sin i~ [ d%,. Ir{ti (%M, ~, Ro)I ~, 
fl 

[ iAjq~os + i ASa(Ro, %M' %s, ~) j"  
h 

s - I 2 k 
0 

2• 

? dq)~ exp F{i,.---j 2-7- 
0 

(13) 

In first-order perturbation theory, for the planar configuration of the rotator 

As far as the exact cross sections (12) are concerned, they must satisfy the principle of 
detailed balance [5] : 

E (2] -:-- !, ~/i" (E, O} --- E' (2]' -t- 1) a i,: (E', 0~. 

In order that expression (13) satisfy this principle, we introduce, following [5], the modi- 
fied cross section 

@],(E, O)=  ( 2 ] ' +  1 )  ,/2 
2] -~ 1 a.i.., (E, 0~, 

by integrating which over the scattering angle | we obtain the following representation of 
the total cross section in the form of an integral over the impact parameter p: 

= dpp~ i / ,  [E, Ro(P), @ = 01 
'I" . 2 ]  § I 

a 

We note that in order to obtain the dependence Ro(p) we use the relation p2 = Ro=[I_ Wo(Ro)/ 
Es], where E s = (E + E')/2 is the average energy of relative motion. 

For the model of a plane rotator, summation over m, m' in (12) is performed simply and 
gives 

0 

where  F(Ro) has  the  form (11) ,  and j = m i n ( j ,  j ' ) .  

3. Trajectory Problem. In view of the approximate condition ~ = O, the trajectory of 
relative motion lies in the XY plane (Fig. i) and is found from the equations 

- ~  7 )  = S~ (I - -  ~?/R2) - -  U'~o (R~ R (0) = P,,, (15) 

d t  - -  R 2 k ~t .J , Xo(O)==O, ( 1 6 )  

where Xo is the polar angle; ~ is the reduced mass of the colliding particles. The integra- 
tion of the system (15), (16) and calculation of the integrals Q (I0) permit finding quite 
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TABLE i. 
Ar--N2 

T,K 

Rate Constants Koj'(T)*IO :6 (m3/sec) for the system 

f, 

300 

450 
618 A 

768 

300 
B 450 

618 
768 

Nq#e._ A corres 
the Bessel func 
(20) was used. 
parentheses. 

1,3 
(1,6) 

1,46 
1,60 

1,68 

0,77 
0,85 
0,90 

0,94 

0,79 
(0,2]) 

1,05 
1,23 
1,35 

0,45 
0.69 
0,88 
0,90 

0,36 
(0 ,0 ]4)  

0,62 
0,85 
1,00 

0,12 

0,27 
0,46 
0,61 

0,13 

0,31 
0,50 
0,66 

0,017 
0,063 
0,14 
0.23 

10 

0,13 
0,26 
0,38 

0,015, 

0,030 
0,061 

)onds to the calculation with the argument of 
:ion in the form (19), while for B the form 
The experimental data in [9] are shown in the 

accurately F (ii) or all quantities entering into the more general expressions for the scat- 
tering profile. 

To obtain the explicit form of the Q integrals we shall use the approximate trajectory 
of relative motion, obtained by the effective quantum number method [6], according to which 
in (15) the radial term I/R 2 is replaced by I/R~. The problem (15) then has an exact solu- 
tion for an exponential potential 

Wo (Ri '7 e x p ( - -  a ~ i  (17)  

and for the Morse potential 

W~ 'I (R) = ~ [(1 - -  e::v : - -  ~o (R ---,.~,,0) ~ - -  11, (18)  

wh ich  h a s  t h e  f o l l o w i n g  f o r m ,  r e s p e c t i v e l y ,  

where 

[--c':R (t)] = exp (--  aRo)sech ~ r,z/__. 1 / @  3| ' ' I ~ Wo(Ro) t , dxp 
L ~ J 

-': ":p { - -  % [R (t) - -  a d }  l / ""'~: " = w o  (/<,, ~ ~ s i n  ~ / ( c h  q t  - -  cos q , ,  

V 2 ,r W~(Ro)Ie q = ~ o  W~(Ro) , s i n g =  
1 + Wg (Ro)le 

4. Calculation of the Arsument F (Ii) of the Bessel Functio E. We shall calculate the 
quantity F (ll)'in the approximation Y(t) = 0 and under the assumption that the potential 
W2(R) is related to the potential Wo(R) via the anisotropy parameter ~o(Wa(R) = yoWo(R)), 
which depends on R much more weakly than Wo(R) and was assumed to be constant in the calcula- 
tions. In this case, for the potentials (17) and (18) we obtain, respectively, 

where 

2~l~Vs cosech Wo (Ro) 1 F ( R o )  = - ~,o ~ ~ . 

F (Ro) = F+ (Ro) - -  F -  (Ro), 

(19) 

(2o) 

F+ (Ro) = Vo [W~ (R,,)]= cos= ~ 2=~,, e h ( - -  2 v & / q ) .  , 

q~ sin 2 ~ sh (2av,/q) 

F -  (Ro) = Yo 2~ Vew~ '  (Ro) cosech 2nv,. sh ( - -  2vs,/q). 
q n 
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TABLE 2. Coefficient of RT Diffusion ~RT (T, j).lO ~6 m3/sec 
for the System Ar--N2. The Orders of ~;:,onitude are Shown in 
Parentheses 

T,K 

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

2 

0,30 
0.72 
0,99 
1,2 
1,4 
1,6 
1,7 
1,7 
1,8 
1,8 

4 

0,48 
0,95 
1,3 
1,6 
1,9 
2,1 
2,3 
2,4 
2,5 
2,5 

6 

0,52 
1,2 
1,7 
2,1 
2,4 
2,7 
2,9 
3,0 
3,1 
3,2 

8 

0,62 

2 , 8  
2,8 
2,8 
2,9 
2,7 
217 

10 

0.76 
3,2 
4,5 
5,1 
5,2 
5,2 
5,1 
4,9 
4,8 
4,6 

12 

o , 6 z ( - - 3 )  
o,24(--1 ) 
0,85(--1 ) 
o,16 
0.24 
0,31 
0,36 
0,41 
0,44 
0,47 

14 

O, 26(--6 } 
o, 18(--3), 
0,21(--2)~ 
0,77( --2 ). 
o.!6(--1} 
o ,29(-1)  
o,42(--i)  
o ,56(-1)  
0,68(--1 ) 

, 0,81(--1 } 

5. Rate Constants of RT Processes. The total cross section (14) was used to calculate 
the rate constants of rotational excitation in the system Ar--N2 

oo (2kb'l  [ 
Kii" (T) = 4 dqq s exp ( - -  g2) cr [E -+ kbTq'- 1, 

\ aF / , 11" 
ge,x(e.) 

(21) 

where k b is Boltzmann's constant; T, temperature; e, = E,/(kbT); E, = Be[j'(j'+l) -- j(j+l)], 
resonance refect; and X, Heaviside function. 

In performing the calculations, we used the representation of the interaction potential 
in the form (8). The spherically symmetrical functions W r (r = 0; 2) were determined in one 
case using the method in [7] and in the other by analyzing the numerical calculations [8]. 
As a result we obtain the approximations (17) and (18) with the parameters (atomic units): 
i) C = 1.85-10 s, a = 2.936, Yo = i; 2) ~ = 0.51o10 -3 , so = 0.98, ao = 6.51, Yo = 0.2. 

The results of the calculation of the constants Koj,(T) (21) for the arguments (19) and 
(20) are presented in Table i. Good agreement is observed with the experimental data [9] at 
T = 300~ The difference in the arguments has little effect in the range of temperatures 
and quantum numbers studied. 

6. Coefficient of RT Diffusion. In the approximation of a small rotational quantum 
relative to kbT , the system of relaxation equations can be replaced by a single Fokker--Planck 
equation with the RT collision integral in the form [I0] 

OH rr  (i)  eT �9 ~ R T  Oz (1) 
j~ r  ( j ) = _ n _  oi , n U ) = - =  (r,/)-~-, 

where n i s  the  number d e n s i t y  o f  s t r u c t u r e l e s s  p a r t i c l e s  p a r t i c i p a t i n g  i n  the  c o l l i s i o n s ;  
z ( j )  i s  the  r e l a t i v e  p o p u l a t i o n  d e n s l t y ;  _~RT(T, j )  i s  the c o e f f i c i e n t  o f  RT d i f f u s i o n  ove r  
quantum numbers, wh ich  Js c a l c u l a t e d  i n  terms o f  the  r a t e  c o n s t a n t s  as f o l l o w s :  

'E Yi r r ( T ,  ] ) = . 2  

~j=0 

The calculation of the coefficient ~ RT 
equation 

(A/) ~ [Ifii+A i (T) -F Kii-a! (T)]. (22) 

was performed for the system Ar--N2 using the 

r s (j) 
~: (T, i ) -  

2Q (T) 
exp [ - -  r (/}] ~ (~])-" [ s  (j - -  A j) X (] - -  Aj) �9 

Ai~ =0 

)2;K,~x(T)q__s(j+Aj) .,~ ~ (" , Aj • jO)2 x "~3 t -F Ko~. iT)j,, 
~=~i~k ~ 0 0 0 " ' z=ai 0 0 

where s(j) = 2j + i; Q(T) is the partition function; c(j) = (Be/kbT)j( j + i) �9 !a b c) 
are the Clebsh-Gordon coefficients; and X(j') : exp (As(j', j)). ' 0 0 0 

(23) 
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4 L 
i x - - /  
I a - - 2  

/oo Jo~ 500 T 

F i g .  2.  B e h a v i o r  o f  t h e  r a t i o  o f  t h e  r o t a -  
t i o n a l  relaxation time to the translational 
relaxation time as a function of temperature: 
i) experiment [13], 2) experiment [14], the 
continuous curve shows the results of this 
work, and the dashed curve shows the trajec- 
tory calculations [15], T, ~ 

Equation (23) was obtained from (22) using the principle of detailed balance for rota- 
tional constants and the relationship between the RT constants of an arbitrary transition 
and the constants of a transition out of the ground state with the help of the Clebsh-Gordon 
coefficients [ll]. The results of the calculation are presented in Table 2. 

7. Average Rotational Relaxation Time. The cross sections obtained permit calculating 
the rotational relaxation time ZR, which is expressed in terms of the integral bracket 133 of 
the Van-Chang--Uhlenbeck equation 

3 ~R L- v 
~R = =  (1~3) (24) 

where C T R v, Cv are the constant-volume heat capacities for the translational and rotational 
degrees of freedom, respectively. In the case of a diatomic gas, the integral bracket Is3 
is expressed in terms of the total cross section as follows: 

' 1 E ___ . 2 (E ~ kbTq"-!, 3 Q2 (T) \ am0 : s (1:) s (12) exp [ - -  ~ (]:) - -  ~ (J,,)l i" dqq 3 exp ( - -  q)-' ~, ~/,i, 
h ,12 

I~,12 

where n is the number density and mo is the mass of the moi~cules. 

The RT collision cross section for diatomic molecules was represented in the form [2] 

,~ii; (2}a q_ l) (2f, _Jr l) E E ,  ~/~ V 2 F~(Ro(p)) J~i, 
o,.~. (E) -- 2r~ (2j, + 1) (2j~ + 1) , ~ dppJ~._  h 7 k j ' 

~  
where Ajr = Jr -- Jr" 

In order to describe RT processes in the homonuclear diatomic gas, we select the inter- 
action potential in the following form: 

W (R, T~, ~)  == Wo(R) + W2(R) [c~ZT1 -~ c~2Y2[" (26) 

In particular, in calculating the quantity T R (24) in N2 the parameters of the interaction 
potential (26) are determined from calculations of the potential surface [12] and have the 
form C = 98.8, ~ = 1.8, To = 0.54. 

In the case under study, the arguments of the Bessel functions in (25) have the form 
,! 

(19), where the substitution v s + Vsr = Be(Jr + Jr + I) must be made in order to obtain 
F r (r = i, 2). 

The results of the calculation of the quantity TR are shown in Fig. 2, which shows the 
quantity Z(T) = TR(T)/Tt(T) ; ~t(T) is the average relaxation time of the translational de- 
grees of freedom. 

A comparison of the calculations with the experimental data [13, 14], as well as with the 
calculation in [15], shows that the model used for the collision gives satisfactory agreement. 
For T < 200~ the calculation deviates from the experimental data. As preliminary calcula- 
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tions Show, this is related to the neglect of RR processes in this temperature range in the 
calculation of the integral bracket as well as the attractive forces in the elastic part of 
the intermolecular interaction potential. 

NOTATION 
�9 , ! 

J m 
f jm , amplitude of rotational excitation; p, momentum of the oncoming particle before 

the collision; t~. Planck's constant; i = ~(--i); ~ = 3.14, ...; Ro, radius vector of the point 
of closest approach; Fj'm'jm , scattering profile; %~ ~M, angular variables which are conju- 
gate to the orbital J and magnetic M moments, respectively; ~'oJ, ~oM, initial values of the 
angular variables ~,~ and %~I; S, classical action; ~, t, time variables; R(t) = (X(t), Y(t), 
Z(t)), radius vector of the particle along the trajectory of relative motion; ~, set of angu- 
lar variables; J, set of action variables; n, set of quantum numbers; 6, vector of constants 
in the Bohr--Sommerfeld quantization condition; Sp, successive approximation of order p to the 
classical motion; Jl' set of action variables on the section l (initial or final) of the 
eikonal trajectory; Pl, momentum on the section 1 of the eikonal trajectory; .Tr p, right side 
of the equation for Sp; ~(~), time dependence of the angular variable; vi,f, relative veloc- 
ity of the colliding particles in the initial (Z = i) and final (l = f) channels; 9i,f, vec- 
tor of frequencies in the initial (l = i) and final (l = f) channels; ASk, increment to the 
classical action in the k-th order; Be, rotational constant of the molecule; To, limit of 
integration over time; Wo (R), elastic interaction potential; V~ (R, X), inelastic interaction 
potential; W2(R), elastic part of the potential in the inelastic potential V~(R, X); JAj/2, 
a Bessel function of order Aj/2; F/J~, argument of the Bessel function; ~, ratio of the mag- 
netic and orbital moments; B, angle between the orbital and magnetic moments; ,~#H', value 
of the inelastic scattering profile averaged over the angular variables; ~, azimuthal angle 
in the dynamic plane of impact parameters; Xr (r = I; 2), angle between the axis connecting 
the centers of mass of the molecules and the axis of the r-th rotator. 

LITERATURE CITED 

i. G. V. Dubrovskii and A. V. Bogdanov, "A general quasiclassical approximation of the T 
operator in action-angle variables," Chem. Phys. Lett., 62, No. i, 89-94 (1979). 

2. G. V. Dubrovskii and L. F. V'yunenko, "Theory of vibrational--rotational excitation of 
diatomic molecules within the framework of the generalized eikonal method," Zh. Eksp. 
Teor. Fiz., 80, No. i, 66-79 (1981). 

3. A. P. Clark, A. S. Dickinson, and D. Richards, "The correspondence principle in heavy- 
particle collisions," Adv. Chem. Phys., 36, 63-139 (1977). 

4. G. V. Dubrovskii and A. V. Skorodumov, "Quasiclassical approximation for inelastic atom- 
molecule scattering amplitudes," Zh. Eksp. Teor. Fiz., 73, No. i, 76-89 (1977). 

5. A. S. Dickinson and D. Richards, "Rotational excitation of diatomic molecules by atoms," 
J. Phys. B: Atom. Molec. Phys., 7, No. 14, 1916-1936 (1974). 

6. E. E. Mikitin and A. I. Osipov, Vibrational Relaxation in Gases [in Russian], VINITI, 
Moscow (1977). 

7. C. Nyeland and G. D. Billing, "Approximative treatments of rotational relaxation," Chem. 
Phys., 4-0, 103-110 (1979). 

8. S. Lee and Y. S. Kim, "A study of Ar--N2 interaction. II. Modification of the electron 
gas model potential at intermediate and large distances," J. Chem. Phys., 7-0, No. ii, 
4856-4863 (1979). 

9. A. E. DePristo and H. Rabitz, "Scaling theoretical deconvolution of bulk relaxation data: 
State-to-state rates from pressure broadened line widths," J. Chem. Phys., 68, No. 4, 
1981-1987 (1978). 
G. V. Dubrovskii, "Simplified kinetic approaches to the dynamics of structurally relaxing 
gas," Zh. Tekh. Fiz., 52, No. i0, 1927-1937 (1982). 
D. E. Fitz and D. J. Kouri, "On the sudden approximation of cross section: computational 
tests and factorization of cross sections and related scattering phenomena," Chem. Phys., 
47, No. 2, 195-209 (1980). 
--S. Lee and Y. S. Kim, "~--N~2 2 repulsive interaction obtained through a combining rule," 
J. Chem. Phys., 73, No. i0, 5131-5134 (1980). 
G. E. Prangsma, A. H. Alberga, and J. J. M. Beenakker, "Ultrasonic determination of the 
volume viscosity of N2, CO, CH4 and CD~ between 77 and 300~ '' Physica, 64, No. 2, 248- 

288 (1973). 

I0. 

Ii. 

12. 

13. 

979 



14. E. H. Carnevalle, C. Carey, and G. Larson, "Ultrasonic determination of rotational col- 
lision numbers and vibrational relaxation times of polyatomic gases at high temperatures," 
J. Chem. Phys., 47, No. 8, 2829-2835 (1967). 

15. C. Nyeland and G. Billing, "Rotational relaxation of homonuclear diatomic molecules by 
classical trajectory computation," Chem. Phys., 30, 401-406 (1978). 

INVESTIGATION OF A HIGH-ENTHALPY SUBMERGED JET DISCHARGING FROM 

THE CHANNEL OF AN ARC PLASMOTRON 

A. T. Neklesa, A. V. Gershun, 
P. N. Tsybulev, and V. D. Parkhomenko 

UDC 532.517.4:533.9.07 

The variation of the main parameters over the length and cross section of the 
jet is determined experimentally and is compared with theoretical data. 

To organize the efficient mixing of plasma jets with the initial products in multiarc 
plasmachemical reactors [i, 2] one must know, first of all, the distribution of the velocity 
head and specific heat flux (temperature) over the length and cross section of the jet, as 
well as the diameter of the jet at any distance from its orifice. 

The exact analytic determination of these quantities is hindered by the considerable var- 
iation of the gas density along the jet axis, the intense swirling of the stream in the dis- 
charge channel of the plasmotron, and the action of external electromagnetic forces on the 
conducting section of the jet. 

A submerged high-enthalpy air jet discharging from the channel of an arc plasmotron, with 
the average length of the arc fixed by a step, was investigated experimentally. A compara- 
tively small section of the jet of about five diameters was studied. This was due to the re- 
quirement of compactness of the mixing devices of plasmachemical reactors. In addition, at a 
large distance from the nozzle cut the values of the parameters of the jet decay and the jet 
loses its individuality as a result of mixing of the working body of the jet with the entrain- 
ed stream [3], so that prediction of its behavior in a confined space (the reactor) becomes 
problematical. 

Test conditions: gas flow rate (1.1-2.76).10 -3 kg/sec, specific enthalpy of air (5300- 
8400) kJ/kg, diameter of discharge channel of the plasmotron 8-10 -3 and 9.5.10 -3 m, step diam- 
eter (15 and 17.5)-10 -3 m, respectively, step length 4-10 ~= m, number of ampere turns of the 
solenoid (0-24)-103 . 

First we found the value of the specific heat flux from the jet to the calorimetric probe 
of enhanced sensitivity. The construction of the probe and the measurement procedure are 
described in detail in [4]. The dynamic head was determined with a water-cooled Pitot tube, 
structurally combined with the calorimetric probe. The pressure was converted into an elec- 
trical signal by a measurement complex of the IKD6TDF type. The probe allows one to make a 
simultaneous continuous recording of the specific heat flux and the excess pressure in a cross 
section of the jet. The total error in determining the specific values of the heat fluxes was 
9.5% [5] and the accuracy in measuring the excess pressure was • rel.%. 

The gasdynamic and thermal radii of the jet were determined from the corresponding oscil- 
lograms and were compared with T~pler photographs. The temperature was calculated through 
the value of q by the method of [6]. To reduce the number of tests and formalize the sta- 
tistical treatment of the results obtained, we used a central, composite, rotatable plan for 
the experiment [7]. 

The results of the measurements are presented in Table 1. To treat the test data we 
obtained interpolation equations describing distributions of velocity head, specific heat 
flux, and temperature along the jet axis as functions of the gas flow rate and the number 
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